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PART I: STANDARD MODEL PROCESSES
Setting aside leptoproduction (for which, see Sec. 16 of this Review), the cross sections of

primary interest are those with light incident particles, e+e−, γγ, qq, gq , gg, etc., where g and q
represent gluons and light quarks. The produced particles include both light particles and heavy
ones - t, W , Z, and the Higgs boson H. We provide the production cross sections calculated within
the Standard Model for several such processes.

51.1 Resonance Formation
Resonant cross sections are generally described by the Breit-Wigner formula (Sec. 50.3 of this

Review).

σ(E) = 2J + 1
(2S1 + 1)(2S2 + 1)

4π
k2

[
Γ 2/4

(E − E0)2 + Γ 2/4

]
BinBout, (51.1)

where E is the c.m. energy, J is the spin of the resonance, and the number of polarization states
of the two incident particles are 2S1 + 1 and 2S2 + 1. The c.m. momentum in the initial state
is k, E0 is the c.m. energy at the resonance, and Γ is the full width at half maximum height of
the resonance. The branching fraction for the resonance into the initial-state channel is Bin and
into the final-state channel is Bout. For a narrow resonance, the factor in square brackets may be
replaced by πΓδ(E − E0)/2.

51.2 Production of light particles
The production of point-like, spin-1/2 fermions in e+e− annihilation through a virtual photon,

e+e− → γ∗ → ff , at c.m. energy squared s is given by

dσ

dΩ
= Nc

α2

4s β
[
1 + cos2 θ + (1− β2) sin2 θ

]
Q2
f , (51.2)

where β is v/c for the produced fermions in the c.m., θ is the c.m. scattering angle, and Qf
is the charge of the fermion. The factor Nc is 1 for charged leptons and 3 for quarks. In the
ultrarelativistic limit, β → 1,

σ = NcQ
2
f

4πα2

3s = NcQ
2
f

86.8 nb
s (GeV2)

. (51.3)

The cross section for the annihilation of a qq pair into a distinct pair q′q′ through a gluon is com-
pletely analogous up to color factors, with the replacement α→ αs. Treating all quarks as massless,
averaging over the colors of the initial quarks and defining t = −s sin2(θ/2), u = −s cos2(θ/2), one
finds [1]

dσ

dΩ
(qq → q′q′) = α2

s

9s
t2 + u2

s2 . (51.4)

Crossing symmetry gives

dσ

dΩ
(qq′ → qq′) = α2

s

9s
s2 + u2

t2
. (51.5)

If the quarks q and q′ are identical, we have

S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)
31st May, 2024 10:13am



2 51. Cross-Section Formulae for Specific Processes

dσ

dΩ
(qq → qq) = α2

s

9s

[
t2 + u2

s2 + s2 + u2

t2
− 2u2

3st

]
, (51.6)

and by crossing

dσ

dΩ
(qq → qq) = α2

s

9s

[
t2 + s2

u2 + s2 + u2

t2
− 2s2

3ut

]
. (51.7)

Annihilation of e+e− into γγ has the cross section

dσ

dΩ
(e+e− → γγ) = α2

2s
u2 + t2

tu
. (51.8)

The related QCD process also has a triple-gluon coupling. The cross section is

dσ

dΩ
(qq → gg) = 8α2

s

27s (t2 + u2)
(

1
tu
− 9

4s2

)
. (51.9)

The crossed reactions are

dσ

dΩ
(qg → qg) = α2

s

9s (s2 + u2)(− 1
su

+ 9
4t2 ) (51.10)

and

dσ

dΩ
(gg → qq) = α2

s

24s(t2 + u2)( 1
tu
− 9

4s2 ) . (51.11)

Finally,

dσ

dΩ
(gg → gg) = 9α2

s

8s (3− ut

s2 −
su

t2
− st

u2 ) . (51.12)

Lepton-quark scattering is analogous (neglecting Z exchange)

dσ

dΩ
(eq → eq) = α2

2s e
2
q

s2 + u2

t2
. (51.13)

where eq is the charge of the quark. For neutrino scattering with the four-Fermi interaction

dσ

dΩ
(νd→ `−u) = G2

F s

4π2 , (51.14)

where the Cabibbo angle suppression is ignored. Similarly

dσ

dΩ
(νu→ `−d) = G2

F s

4π2
(1 + cos θ)2

4 . (51.15)

To obtain the formulae for deep inelastic scattering (presented in more detail in Section 18)
we consider quarks of type i carrying a fraction x = Q2/(2Mν) of the nucleon’s energy, where
ν = E − E′ is the energy lost by the lepton in the nucleon rest frame. With y = ν/E we have the
correspondences

1 + cos θ → 2(1− y) ,

dΩcm → 4πfi(x)dx dy , (51.16)

where the latter incorporates the quark distribution, fi(x). In this way we find
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dσ

dx dy
(eN → eX) = 4πα2xs

Q4
1
2
[
1 + (1− y)2

]
×
[4
9(u(x) + u(x) + . . . ) + 1

9(d(x) + d(x) + . . .)
]

(51.17)

where now s = 2ME is the cm energy squared for the electron-nucleon collision, and we have
suppressed contributions from higher mass quarks.

Similarly,

dσ

dx dy
(νN → `−X) = G2

Fxs

π
[(d(x) + . . .) + (1− y)2(u(x) + . . .)] (51.18)

and
dσ

dx dy
(νN → `+X) = G2

Fxs

π
[(d(x) + . . .) + (1− y)2(u(x) + . . .)] . (51.19)

Quasi-elastic neutrino scattering (νµn → µ−p, νµp → µ+n) is directly related to the crossed
reaction, neutron decay. The formula for the differential cross section is presented, for example, in
N.J. Baker et al., Phys. Rev. D23, 2499 (1981).

51.3 Hadroproduction of heavy quarks
For hadroproduction of heavy quarks Q = c, b, t, it is important to include mass effects in the

formulae. For qq̄ → QQ̄, one has

dσ

dΩ
(qq̄ → QQ̄) = α2

s

9s3

√
1−

4m2
Q

s[
(m2

Q − t)2 + (m2
Q − u)2 + 2m2

Qs
]
, (51.20)

while for gg → QQ̄ one has

dσ

dΩ
(gg → QQ̄) = α2

s

32s

√
1−

4m2
Q

s

[ 6
s2 (m2

Q − t)(m2
Q − u)−

−
m2
Q(s− 4m2

Q)
3(m2

Q − t)(m2
Q − u)

+

4
3

(m2
Q − t)(m2

Q − u)− 2m2
Q(m2

Q + t)
(m2

Q − t)2

+4
3

(m2
Q − t)(m2

Q − u)− 2m2
Q(m2

Q + u)
(m2

Q − u)2

−3
(m2

Q − t)(m2
Q − u) +m2

Q(u− t)
s(m2

Q − t)

−3
(m2

Q − t)(m2
Q − u) +m2

Q(t− u)
s(m2

Q − u)

]
. (51.21)
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51.4 Production of Weak Gauge Bosons
51.4.1 W and Z resonant production
Resonant production of a single W or Z is governed by the partial widths

Γ (W → `iνi) =
√

2GFm3
W

12π (51.22)

Γ (W → qiqj) = 3
√

2GF |Vij |2m3
W

12π (51.23)

Γ (Z → ff) = Nc

√
2GFm3

Z

6π
×
[
(T3 −Qf sin2 θW )2 + (Qf sin2 θW )2

]
. (51.24)

The weak mixing angle is θW . The CKM matrix elements are indicated by Vij and Nc is 3 for qq
final states and 1 for leptonic final states.

The full differential cross section for fif̄j → (W,Z)→ fi′ f̄j′ is given by

dσ

dΩ
= Nf

c

N i
c

· 1
256π2s

· s2

(s−M2)2 + sΓ 2

×
[
(L2 +R2)(L′2 +R′2)(1 + cos2 θ)

+ (L2 −R2)(L′2 −R′2)2 cosθ
]

(51.25)

whereM is the mass of theW or Z. The couplings for theW are L = (8GFm2
W /
√

2)1/2Vij/
√

2;R =
0 where Vij is the corresponding CKM matrix element, with an analogous expression for L′ and R′.
For Z, the couplings are L = (8GFm2

Z/
√

2)1/2(T3 − sin2 θWQ);R = −(8GFm2
Z/
√

2)1/2 sin2 θWQ,
where T3 is the weak isospin of the initial left-handed fermion and Q is the initial fermion’s electric
charge. The expressions for L′ and R′ are analogous. The color factors N i,f

c are 3 for initial or final
quarks and 1 for initial or final leptons.

51.4.2 Production of pairs of weak gauge bosons

The cross section for ff̄ →W+W− is given in term of the couplings of the left-handed and right-
handed fermion f , ` = 2(T3−QxW ), r = −2QxW , where T3 is the third component of weak isospin
for the left-handed f , Q is its electric charge (in units of the proton charge), and xW = sin2 θW :

dσ

dt
=2πα2

Ncs2

{[(
Q+ `+ r

4xW
s

s−m2
Z

)2

+
(
`− r
4xW

s

s−m2
Z

)2]
A(s, t, u)

+ 1
2xW

(
Q+ `

2xW
s

s−m2
Z

)
(Θ(−Q)I(s, t, u)−Θ(Q)I(s, u, t))

+ 1
8x2

W

(Θ(−Q)E(s, t, u) +Θ(Q)E(s, u, t))
}
, (51.26)
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where Θ(x) is 1 for x > 0 and 0 for x < 0, and where

A(s, t, u) =
(
tu

m4
W

− 1
)(

1
4 −

m2
W

s
+ 3m

4
W

s2

)
+ s

m2
W

− 4,

I(s, t, u) =
(
tu

m4
W

− 1
)(

1
4 −

m2
W

2s −
m4
W

st

)
+ s

m2
W

− 2 + 2m
2
W

t
,

E(s, t, u) =
(
tu

m4
W

− 1
)(

1
4 + m4

W

t2

)
+ s

m2
W

, (51.27)

and s, t, u are the usual Mandelstam variables with s = (pf+pf̄ )2, t = (pf−pW−)2, u = (pf−pW+)2.
The factor Nc is 3 for quarks and 1 for leptons.

The analogous cross-section for qiq̄j →W±Z0 is

dσ

dt
= πα2|Vij |2

6s2x2
W

{(
1

s−m2
W

)2 [(9− 8xW
4

)(
ut−m2

Wm
2
Z

)

+ (8xW − 6) s
(
m2
W +m2

Z

)]

+
[
ut−m2

Wm
2
Z − s(m2

W +m2
Z)

s−m2
W

] [
`j
t
− `i
u

]

+ ut−m2
Wm

2
Z

4(1− xW )

[
`2j
t2

+ `2i
u2

]
+s(m2

W +m2
Z)

2(1− xW )
`i`j
tu

}
, (51.28)

where `i and `j are the couplings of the left-handed qi and qj as defined above. The CKM matrix
element between qi and qj is Vij .

The cross section for qiq̄i → Z0Z0 is

dσ

dt
= πα2

96
`4i + r4

i

x2
W (1− x2

W )2s2

[
t

u
+ u

t
+ 4m2

Zs

tu
−m4

Z

( 1
t2

+ 1
u2

)]
. (51.29)

51.5 Production of Higgs Bosons
51.5.1 Resonant Production

The Higgs boson of the Standard Model can be produced resonantly in the collisions of quarks,
leptons, W or Z bosons, gluons, or photons. The production cross section is thus controlled by
the partial width of the Higgs boson into the entrance channel and its total width. The branching
fractions for the Standard Model Higgs boson are shown in Fig. 1 of the “Searches for Higgs bosons”
review in the Particle Listings section, as a function of the Higgs boson mass. The partial widths
are given by the relations

Γ (H → ff) =
GFm

2
fmHNc

4π
√

2

(
1− 4m2

f/m
2
H

)3/2
, (51.30)
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Γ (H →W+W−) = GFm
3
HβW

32π
√

2

(
4− 4aW + 3a2

W

)
, (51.31)

Γ (H → ZZ) = GFm
3
HβZ

64π
√

2

(
4− 4aZ + 3a2

Z

)
, (51.32)

where Nc is 3 for quarks and 1 for leptons and where aW = 1−β2
W = 4m2

W /m
2
H and aZ = 1−β2

Z =
4m2

Z/m
2
H . The decay to two gluons proceeds through quark loops, with the t quark dominating [2].

Explicitly,

Γ (H → gg) = α2
sGFm

3
H

36π3
√

2

∣∣∣∣∣∑
q

I(m2
q/m

2
H)
∣∣∣∣∣
2

, (51.33)

where I(z) is complex for z < 1/4. For z < 2× 10−3, |I(z)| is small so the light quarks contribute
negligibly. For mH < 2mt, z > 1/4 and

I(z) = 3
[
2z + 2z(1− 4z)

(
sin−1 1

2
√
z

)2
]
, (51.34)

which has the limit I(z)→ 1 as z →∞.
51.5.2 Higgs Boson Production in W ∗ and Z∗ decay

The Standard Model Higgs boson can be produced in the decay of a virtual W or Z (“Hig-
gstrahlung”) [3, 4]: In particular, if k is the c.m. momentum of the Higgs boson,

σ(qiqj →WH) = πα2|Vij |2

36 sin4 θW

2k√
s

k2 + 3m2
W

(s−m2
W )2 (51.35)

σ(ff̄ → ZH) =
2πα2(`2f + r2

f )
48Nc sin4 θW cos4 θW

2k√
s

k2 + 3m2
Z

(s−m2
Z)2 , (51.36)

where ` and r are defined as above.
51.5.3 W and Z Fusion
Just as high-energy electrons can be regarded as sources of virtual photon beams, at very high
energies they are sources of virtual W and Z beams. For Higgs boson production, it is the longi-
tudinal components of the W s and Zs that are important [5]. The distribution of longitudinal W s
carrying a fraction y of the electron’s energy is [6]

f(y) = g2

16π2
1− y
y

, (51.37)

where g = e/ sin θW . In the limit s � mH � mW , the partial decay rate is Γ (H → WLWL) =
(g2/64π)(m3

H/m
2
W ) and in the equivalent W approximation [7]

σ(e+e− →νeνeH) = 1
16m2

W

(
α

sin2 θW

)3

×
[(

1 + m2
H

s

)
log s

m2
H

− 2 + 2m
2
H

s

]
. (51.38)
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There are significant corrections to this relation when mH is not large compared to mW [8]. For
mH = 150 GeV, the estimate is too high by 51% for

√
s = 1000 GeV, 32% too high at

√
s = 2000

GeV, and 22% too high at
√
s = 4000 GeV. Fusion of ZZ to make a Higgs boson can be treated

similarly. Identical formulae apply for Higgs production in the collisions of quarks whose charges
permit the emission of a W+ and a W−, except that QCD corrections and CKM matrix elements
are required. Even in the absence of QCD corrections, the fine-structure constant ought to be
evaluated at the scale of the collision, say mW . All quarks contribute to the ZZ fusion process.

51.6 Inclusive hadronic reactions
One-particle inclusive cross sections Ed3σ/d3p for the production of a particle of momentum p

are conveniently expressed in terms of rapidity y (see above) and the momentum pT transverse to
the beam direction (in the c.m.):

E
d3σ

d3p
= d3σ

dφ dy pT dpT
. (51.39)

In appropriate circumstances, the cross section may be decomposed as a partonic cross section
multiplied by the probabilities of finding partons of the prescribed momenta:

σhadronic =
∑
ij

∫
dx1 dx2 fi(x1) fj(x2) dσ̂partonic, (51.40)

The probability that a parton of type i carries a fraction of the incident particle’s that lies between
x1 and x1 + dx1 is fi(x1)dx1 and similarly for partons in the other incident particle. The partonic
collision is specified by its c.m. energy squared ŝ = x1x2s and the momentum transfer squared t̂.
The final hadronic state is more conveniently specified by the rapidities y1, y2 of the two jets resulting
from the collision and the transverse momentum pT . The connection between the differentials is

dx1dx2dt̂ = dy1dy2
ŝ

s
dp2

T , (51.41)

so that

d3σ

dy1dy2dp2
T

= ŝ

s

[
fi(x1)fj(x2)dσ̂

dt̂
(ŝ, t̂, û) + fi(x2)fj(x1)dσ̂

dt̂
(ŝ, û, t̂)

]
, (51.42)

where we have taken into account the possibility that the incident parton types might arise from
either incident particle. The second term should be dropped if the types are identical: i = j.

51.7 Two-photon processes
In the Weizsäcker-Williams picture, a high-energy electron beam is accompanied by a spectrum of
virtual photons of energies ω and invariant-mass squared q2 = −Q2, for which the photon number
density is

dn = α

π

[
1− ω

E
+ ω2

E2 −
m2
e ω

2

Q2E2

]
dω

ω

dQ2

Q2 , (51.43)

where E is the energy of the electron beam. The cross section for e+e− → e+e−X is then [9]

dσe+e−→e+e−X(s) = dn1dn2dσγγ→X(W 2), (51.44)

where W 2 = m2
X . Integrating from the lower limit Q2 = m2

e
ω2
i

Ei(Ei−ωi) to a maximum Q2 gives
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σe+e−→e+e−X(s) = α2

π2

∫ 1

zth

dz

z

×

(ln Q
2
max

zm2
e

− 1
)2

f(z) + 1
3(ln z)3

σγγ→X(zs), (51.45)

where
f(z) = (1 + 1

2z)
2 ln(1/z)− 1

2(1− z)(3 + z). (51.46)

The appropriate value of Q2
max depends on the properties of the produced system X. For

production of hadronic systems, Q2
max ≈ m2

ρ, while for lepton-pair production, Q2 ≈ W 2. For
production of a resonance with spin J 6= 1, we have

σe+e−→e+e−R(s) = (2J + 1)8α2ΓR→γγ
m3
R

×
[
f(m2

R/s)
(

ln m2
V s

m2
em

2
R

− 1
)2

− 1
3

(
ln s

M2
R

)3]
, (51.47)

where mV is the mass that enters into the form factor for the γγ → R transition, typically mρ.

PART II: PROCESSES BEYOND THE STANDARD MODEL

51.8 Production of supersymmetric particles
In supersymmetric (SUSY) theories (see Supersymmetric Particle Searches in this Review),

every boson has a fermionic superpartner, and every fermion has a bosonic superpartner. The
minimal supersymmetric Standard Model (MSSM) is a direct supersymmetrization of the Standard
Model (SM), although a second Higgs doublet is needed to avoid triangle anomalies [10]. Under
soft SUSY breaking, superpartner masses are lifted above the SM particle masses. In weak scale
SUSY, the superpartners are invoked to stabilize the weak scale under radiative corrections, so the
superpartners are expected to have masses of order the TeV scale.
51.8.1 Gluino and squark production

The superpartners of gluons are the color octet, spin−1
2 gluinos (g̃), while each helicity compo-

nent of quark flavor has a spin-0 squark partner, e.g. q̃L and q̃R. Third generation left- and right-
squarks are expected to have large mixing, resulting in mass eigenstates q̃1 and q̃2, with mq̃1 < mq̃2

(here, q denotes any of the SM flavors of quarks and q̃i the corresponding flavor and type (i = L,R
or 1, 2) of squark). Gluino pair production (g̃g̃) takes place via either glue-glue or quark-antiquark
annihilation [11].

The subprocess cross sections are usually presented as differential distributions in the Mandel-
stam variables s, t and u. Note that for a 2 → 2 scattering subprocess ab → cd, the Mandelstam
variable s = (pa + pb)2 = (pc + pd)2, where pa is the 4-momentum of particle a, and so forth. The
variable t = (pc − pa)2, where c and a are taken conventionally to be the most similar particles in
the subprocess. The variable u would then be equal to (pd − pa)2. Note that since s, t and u are
squares of 4-vectors, they are invariants in any inertial reference frame.

Gluino pair production at hadron colliders is described by:

dσ

dt
(gg → g̃g̃) = 9πα2

s

4s2

{
2(m2

g̃ − t)(m2
g̃ − u)

s2
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+
(m2

g̃ − t)(m2
g̃ − u)− 2m2

g̃(m2
g̃ + t)

(m2
g̃ − t)2

+
(m2

g̃ − t)(m2
g̃ − u)− 2m2

g̃(m2
g̃ + u)

(m2
g̃ − u)2 +

m2
g̃(s− 4m2

g̃)
(m2

g̃ − t)(m2
g̃ − u)

−
(m2

g̃ − t)(m2
g̃ − u) +m2

g̃(u− t)
s(m2

g̃ − t)
−

(m2
g̃ − t)(m2

g̃ − u) +m2
g̃(t− u)

s(m2
g̃ − u)

}
, (51.48)

where αs is the strong fine structure constant. Also,

dσ

dt
(qq̄ → g̃g̃) = 8πα2

s

9s2

4
3

(
m2
g̃ − t

m2
q̃ − t

)2

+ 4
3

(
m2
g̃ − u

m2
q̃ − u

)2

+ 3
s2

[
(m2

g̃ − t)2 + (m2
g̃ − u)2 + 2m2

g̃s
]

− 3

[
(m2

g̃ − t)2 +m2
g̃s
]

s(m2
q̃ − t)

− 3

[
(m2

g̃ − u)2 +m2
g̃s
]

s(m2
q̃ − u)

+ 1
3

m2
g̃s

(m2
q̃ − t)(m2

q̃ − u)

 . (51.49)

Gluinos can also be produced in association with squarks: g̃q̃i production, where q̃i represents
any of the various types (left, right- or mixed) and flavors of squarks. The subprocess cross section
is independent of whether the squark is the right-, left- or mixed type:

dσ

dt
(gq → g̃q̃i) = πα2

s

24s2

[
16
3 (s2 + (m2

q̃i
− u)2) + 4

3s(m
2
q̃i
− u)

]
s(m2

g̃ − t)(m2
q̃i
− u)2

×
(

(m2
g̃ − u)2 + (m2

q̃i −m
2
g̃)2 +

2sm2
g̃(m2

q̃i
−m2

g̃)
(m2

g̃ − t)

)
. (51.50)

There are many different subprocesses for production of squark pairs. Since left- and right-
squarks generally have different masses and different decay patterns, we present the differential
cross section for each subprocess of q̃i (i = L, R or 1, 2) separately. (In early literature, the
following formulae were often combined into a single equation which didn’t differentiate the various
squark types.) The result for gg → q̃i ¯̃qi is:
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dσ

dt
(gg → q̃i ¯̃qi) = πα2

s

4s2

1
3

(
m2
q̃ + t

m2
q̃ − t

)2

+ 1
3

(
m2
q̃ + u

m2
q̃ − u

)2

+ 3
32s2

(
8s(4m2

q̃ − s) + 4(u− t)2
)

+ 7
12

− 1
48

(4m2
q̃ − s)2

(m2
q̃ − t)(m2

q̃ − u)

+ 3
32

[
(t− u)(4m2

q̃ + 4t− s)− 2(m2
q̃ − u)(6m2

q̃ + 2t− s)
]

s(m2
q̃ − t)

+ 3
32

[
(u− t)(4m2

q̃ + 4u− s)− 2(m2
q̃ − t)(6m2

q̃ + 2u− s)
]

s(m2
q̃ − u)

+ 7
96

[
4m2

q̃ + 4t− s
]

m2
q̃ − t

+ 7
96

[
4m2

q̃ + 4u− s
]

m2
q̃ − u

 , (51.51)

which has an obvious u↔ t symmetry.
For qq̄ → q̃i ¯̃qi with the same initial and final state flavors, we have

dσ

dt
(qq̄ → q̃i ¯̃qi) = 2πα2

s

9s2

{
1

(t−m2
g̃)2 + 2

s2 −
2/3

s(t−m2
g̃)

}
×
[
−st− (t−m2

q̃i)
2
]
, (51.52)

while if initial and final state flavors are different (qq̄ → q̃′i ¯̃q′i) we instead have

dσ

dt
(qq̄ → q̃′i ¯̃q′i) = 4πα2

s

9s4

[
−st− (t−m2

q̃′i
)2
]
. (51.53)

If the two initial state quarks are of different flavors, then we have

dσ

dt
(qq̄′ → q̃i ¯̃q′i) = 2πα2

s

9s2
−st− (t−m2

q̃i
)2

(t−m2
g̃)2 . (51.54)

If the initial quarks are of different flavor and final state squarks are of different type (i 6= j) then

dσ

dt
(qq̄′ → q̃i ¯̃q′j) = 2πα2

s

9s2
m2
g̃s

(t−m2
g̃)2 . (51.55)

For same-flavor initial state quarks, but final state unlike-type squarks, we also have

dσ

dt
(qq̄ → q̃i ¯̃qj) = 2πα2

s

9s2
m2
g̃s

(t−m2
g̃)2 . (51.56)

There also exist cross sections for quark-quark annihilation to squark pairs. For same flavor quark-
quark annihilation to same flavor/same type final state squarks,

dσ

dt
(qq → q̃iq̃i) =
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= πα2
s

9s2 m
2
g̃s

{
1

(t−m2
g̃)2 + 1

(u−m2
g̃)2 −

2/3
(t−m2

g̃)(u−m2
g̃)

}
, (51.57)

while if the final type squarks are different (i 6= j), we have

dσ

dt
(qq → q̃iq̃j) =

2πα2
s

9s2 ×{
[−st− (t−m2

q̃i
)(t−m2

q̃j
)]

(t−m2
g̃)

+
[−su− (u−m2

q̃i
)(u−m2

q̃j
)]

(u−m2
g̃)

}
. (51.58)

If initial/final state flavors are different, but final state squark types are the same, then

dσ

dt
(qq′ → q̃iq̃

′
i) = 2πα2

s

9s2
m2
g̃s

(t−m2
g̃)2 . (51.59)

If initial quark flavors are different and final squark types are different, then

dσ

dt
(qq′ → q̃iq̃

′
j) = 2πα2

s

9s2
−st− (t−m2

q̃i
)(t−m2

q̃j
)

(t−m2
g̃)2 . (51.60)

51.8.2 Gluino and squark associated production
In the MSSM, the charged spin-1

2 winos and higgsinos mix to make chargino states χ±1 and
χ±2 , with mχ±1

< mχ±2
. The spin−1

2 neutral bino, wino and higgsino fields mix to give four neu-
tralino mass eigenstates χ0

1,2,3,4 ordered according to mass. We sometimes denote the charginos
and neutralinos collectively as -inos for notational simplicity

For gluino and squark production in association with charginos and neutralinos [12], the quark-
squark-neutralino couplings1 are defined by the interaction Lagrangian terms

Lf̃f χ̃0
i

=
[
iAf

χ̃0
i
f̃ †L

¯̃χ0
iPLf + iBf

χ̃0
i
f̃ †R

¯̃χ0
iPRf + h.c.

]
,

,where Af
χ̃0
i
and Bf

χ̃0
i
are coupling constants involving gauge couplings, neutralino mixing elements

and in the case of third generation fermions, Yukawa couplings. Their form depends on the con-
ventions used for setting up the MSSM Lagrangian, and can be found in various reviews [14] and
textbooks [13, 15]. PL and PR are the usual left- and right- spinor projection operators and f
denotes any of the SM fermions u, d, e, νe, · · · . The fermion-sfermion- chargino couplings have
the form L =

[
iAd

χ̃−i
ũ†Lχ̃

−
i PLd+ iAu

χ̃−i
d̃†Lχ̃

c
iPLu+ h.c.

]
for u and d quarks, where the Ad

χ̃−i
and

Au
χ̃−i

couplings are again convention-dependent, and can be found in textbooks. The superscript c
denotes “charge conjugate spinor”, defined by ψc ≡ Cψ̄T .

The subprocess cross sections for chargino-squark associated production occur via squark ex-
change and are given by

dσ

dt
(ūg → χ̃−i

¯̃dL) = αs
24s2 |A

u
χ̃−i
|2ψ(md̃L

,mχ̃−i
, t), (51.61)

1The couplings Af

χ̃0
i

and Bf

χ̃0
i

are given explicitly in Ref. [13] in Eq. (8.87). Also, the couplings Ad

χ̃−
i

and Au

χ̃−
i

are

given in Eq. (8.93). The couplings Xj
i and Y j

i are given by Eq. (8.103), while the xi and yi couplings are given in
Eq. (8.100). Finally, the couplings Wij are given in Eq. (8.101).
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dσ

dt
(dg → χ̃−i ũL) = αs

24s2 |A
d
χ̃−i
|2ψ(mũL ,mχ̃−i

, t), (51.62)

while neutralino-squark production is given by

dσ

dt
(qg → χ̃0

i q̃) = αs
24s2

(
|Aq

χ̃0
i
|2 + |Bq

χ̃0
i
|2
)
ψ(mq̃,mχ̃0

i
, t), (51.63)

where

ψ(m1,m2, t) = s+ t−m2
1

2s − m2
1(m2

2 − t)
(m2

1 − t)2

+ t(m2
2 −m2

1) +m2
2(s−m2

2 +m2
1)

s(m2
1 − t)

. (51.64)

Here, the variable t is given by the square of “squark-minus-quark” four-momentum. The neutralino-
gluino associated production cross section also occurs via squark exchange and is given by

dσ

dt
(qq̄ → χ̃0

i g̃) = αs
18s2

(
|Aq

χ̃0
i
|2 + |Bq

χ̃0
i
|2
)(m2

χ̃0
i
− t)(m2

g̃ − t)
(m2

q̃ − t)2

+
(m2

χ̃0
i
− u)(m2

g̃ − u)
(m2

q̃ − u)2 −
2ηiηg̃mg̃mχ̃0

i
s

(m2
q̃ − t)(m2

q̃ − u)

 , (51.65)

where ηi is the sign of the neutralino mass eigenvalue and ηg̃ is the sign of the gluino mass eigenvalue.
We also have chargino-gluino associated production:

dσ

dt
(ūd→ χ̃−i g̃) = αs

18s2

|Au
χ̃−i
|2

(m2
χ̃−i
− t)(m2

g̃ − t)

(m2
d̃L
− t)2

+|Ad
χ̃−i
|2

(m2
χ̃−i
− u)(m2

g̃ − u)

(m2
ũL
− u)2 +

2ηg̃Re(Auχ̃−i
Ad
χ̃−i

)mg̃mχ̃is

(m2
d̃L
− t)(m2

ũL
− u)

 , (51.66)

where t̂ = (g̃ − d)2 and in the third term one must take the real part of the in general complex
coupling constant product.
51.8.3 Slepton and sneutrino production

The subprocess cross section for ˜̀
L ¯̃ν`L production (` = e or µ) occurs via s-channelW exchange

and is given by
dσ

dt
(dū→ ˜̀

L ¯̃ν`L) = g4|DW (s)|2

192πs2

(
tu−m2

˜̀
L
m2
ν̃`L

)
, (51.67)

where DW (s) = 1/(s−M2
W + iMWΓW ) is the W -boson propagator denominator. The production

of τ̃1 ¯̃ντ is given as above, but replacing m˜̀
L
→ mτ̃1 , mν̃`L

→ mν̃τ and multiplying by an overall
factor of cos2 θτ (where θτ is the tau-slepton mixing angle). Similar substitutions hold for τ̃2 ¯̃ντ
production, except the overall factor is sin2 θτ .
The subprocess cross section for ˜̀

L
¯̀̃
L production occurs via s-channel γ and Z exchange, and

depends on the neutral current interaction, with fermion couplings to γ and Z0 given by Lneutral =
−eqf f̄γµfAµ + ef̄γµ(αf + βfγ5)fZµ (with values of qf , αf , and βf given in Table-51.1.

The subprocess cross section is given by

dσ

dt
(qq̄ → ˜̀

L
¯̀̃
L) = e4

24πs2

(
tu−m4

˜̀
L

)
×
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13 51. Cross-Section Formulae for Specific Processes

Table 51.1: The constants αf and βf that appear in in the SM neutral
current Lagrangian. Here t ≡ tan θW and c ≡ cot θW .

f qf αf βf

` -1 1
4(3t− c) 1

4(t+ c)
ν` 0 1

4(t+c) −1
4(t+ c)

u 2
3 − 5

12 t+ 1
4c −1

4(t+ c)
d −1

3
1
12 t−

1
4c

1
4(t+ c)

{
q2
` q

2
q

s2 + (α` − β`)2(α2
q + β2

q )|DZ(s)|2

+ 2q`qqαq(α` − β`)(s−M2
Z)

s
|DZ(s)|2

}
, (51.68)

where DZ(s) = 1/(s − M2
Z + iMZΓZ). The cross section for sneutrino production is given by

the same formula, but with α`, β`, q` and m˜̀
L
replaced by αν , βν , 0 and mν̃L , respectively. The

cross section for τ̃1 ¯̃τ1 production is obtained by replacing m˜̀
L
→ mτ̃1 and β` → β` cos 2θτ . The

cross section for ˜̀
R

¯̀̃
R production is given by substituting α` − β` → α` + β` and m˜̀

L
→ m˜̀

R
in

the equation above. The cross section for τ̃2 ¯̃τ2 production is obtained from the formula for ˜̀
R

¯̀̃
R

production by replacing m˜̀
R
→ mτ̃2 and β` → β` cos 2θτ .

Finally, the cross section for τ̃1 ¯̃τ2 production occurs only via Z exchange, and is given by

dσ

dt
(qq̄ → τ̃1 ¯̃τ2) = dσ

dt
(qq̄ → ¯̃τ1τ̃2) =

e4

24πs2 (α2
q + β2

q )β2
` sin2 2θτ |DZ(s)|2(ut−m2

τ̃1m
2
τ̃2). (51.69)

51.8.4 Chargino and neutralino pair production
51.8.4.1 χ̃−i χ̃

0
j production

The subprocess cross section for dū→ χ̃−i χ̃
0
j depends on Lagrangian couplings

LWūd = − g√
2
ūγµPLdW

+µ + h.c.,

LWχ̃−i χ̃
0
j

= −g(−i)θj χ̃−i[X
j
i + Y j

i γ5]γµχ̃0
jW
−µ + h.c.,

Lqq̃χ̃−i = iAd
χ̃−i
ũ†Lχ̃

−
i PLd+ iAu

χ̃−i
d̃†Lχ̃

c
iPLu + h.c.

and
Lqq̃χ̃0

j
= iAq

χ̃0
j
q̃†Lχ̃

0
jPLq + h.c..

Contributing diagrams include W exchange and also d̃L and ũL squark exchange. The Xj
i and

Y j
i couplings are new, and again convention-dependent: the cross section formulae works if the

interaction Lagrangian is written in the above form, so that the couplings can be suitably extracted.
The term θj = 0 (1) ifmχ̃0

j
> 0 (< 0); it comes about because the neutralino field must be re-defined
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by a −iγ5 transformation if its mass eigenvalue is negative [13]. The subprocess cross section is
given in terms of dot products of four momenta, where particle labels are used to denote their
four-momenta; note that all mass terms in the cross section formulae are positive definite, so that
the signs of mass eigenstates have been absorbed into the Lagrangian couplings, as for instance in
Ref. [13]. We then have

dσ

dt
(dū→ χ̃−i χ̃

0
j ) = 1

192πs2[
TW + Td̃L + TũL + TWd̃L

+ TWũL + Td̃LũL

]
(51.70)

where

TW = 8g4|DW (s)|2
{

[Xj2
i + Y j2

i ](χ̃0
j · dχ̃−i · ū+ χ̃0

j · ūχ̃−i · d)

+ 2(Xj
i Y

j
i )(χ̃0

j · dχ̃−i · ū− χ̃
0
j · ūχ̃−i · d)

+ [Xj2
i − Y

j2
i ]mχ̃−i

mχ̃0
j
d · ū

}
, (51.71)

Td̃L =
4|Au

χ̃−i
|2|Ad

χ̃0
j
|2

[(χ̃−i − ū)2 −m2
d̃L

]2
d · χ̃0

j χ̃
−
i · ū, (51.72)

TũL =
4|Ad

χ̃−i
|2|Au

χ̃0
j
|2

[(χ̃0
j − ū)2 −m2

ũL
]2
ū · χ̃0

j χ̃
−
i · d (51.73)

TWd̃L
=
−
√

2g2Re[Ad∗
χ̃0
j
Au
χ̃−i

(−i)θj ](s−M2
W )|DW (s)|2

(χ̃−i − ū)2 −m2
d̃L

×
{

8(Xj
i + Y j

i )χ̃0
j · dū · χ̃−i + 4(Xj

i − Y
j
i )mχ̃−i

mχ̃0
j
d · ū

}
(51.74)

TWũL =

√
2g2Re[Ad∗

χ̃−i
Au
χ̃0
j
(−i)θj ](s−M2

W )|DW (s)|2

(χ̃0
j − ū)2 −m2

ũL

×
{

8(Xj
i − Y

j
i )χ̃0

j · ūd · χ̃−i + 4(Xj
i + Y j

i )mχ̃−i
mχ̃0

j
d · ū

}
(51.75)

and

Td̃LũL = −
4Re[Ad

χ̃0
j
Au∗
χ̃−i
Ad∗
χ̃−i
Au
χ̃0
j
]mχ̃−i

mχ̃0
j
d · ū

[(χ̃−i − ū)2 −m2
d̃L

][(χ̃0
j − ū)2 −m2

ũL
]
. (51.76)

51.8.4.2 Chargino pair production
The subprocess cross section for dd̄ → χ̃−i χ̃

+
i (i = 1, 2) depends on Lagrangian couplings L =

eχ̃−i γµχ̃
−
i A

µ − e cot θW χ̃−i γµ(xi − yiγ5)χ̃−i Zµ and also L 3 iAd
χ̃−i
ũ†Lχ̃

−
i PLd+ iAu

χ̃−i
d̃†Lχ̃

−c
i PLu+ h.c..

Contributing diagrams include s-channel γ, Z0 exchange and t-channel ũL exchange [16, 17]. The
couplings xi and yi are again new and as usual convention-dependent.
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The subprocess cross section is given by

dσ

dt
(dd̄→ χ̃−i χ̃

+
i ) =

1
192πs2 [Tγ + TZ + TũL + TγZ + TγũL + TZũL ] (51.77)

where

Tγ = 32e4q2
d

s2

[
d · χ̃+

i d̄ · χ̃
−
i + d · χ̃−i d̄ · χ̃

+
i +m2

χ̃−i
d · d̄

]
(51.78)

TZ = 32e4 cot2 θW |DZ(s)|2{
(α2

d + β2
d)(x2

i + y2
i )
[
d · χ̃+

i d̄ · χ̃
−
i + d · χ̃−i d̄ · χ̃

+
i +m2

χ̃−i
d · d̄

]

∓ 4αdβdxiyi
[
d · χ̃+

i d̄ · χ̃
−
i − d · χ̃

−
i d̄ · χ̃

+
i

]
−2y2

i (α2
d + β2

d)m2
χ̃−i
d · d̄

}
, (51.79)

TũL =
4|Ad

χ̃−i
|4

[(d− χ̃−i )2 −m2
ũL

]2
d · χ̃−i d̄ · χ̃

+
i (51.80)

TγZ = 64e4 cot θW qd(s−M2
Z)|DZ(s)|2

s
×

{
αdxi

(
d · χ̃+

i d̄ · χ̃
−
i + d · χ̃−i d̄ · χ̃

+
i +m2

χ̃−i
d · d̄

)

±βdyi
(
d · χ̃−i d̄ · χ̃

+
i − d · χ̃

+
i d̄ · χ̃

−
i

)}
(51.81)

TγũL = ∓8e2qd
s

|Ad
χ̃−i
|2

[(d− χ̃−i )2 −m2
ũL

]

{
2d̄ · χ̃+

i d · χ̃
−
i +m2

χ̃−i
d · d̄

}
(51.82)

and

TZũL = ∓8e2 cot θW |DZ(s)|2
|Ad

χ̃−i
|2(s−M2

Z)

[(d− χ̃−i )2 −m2
ũL

]
(αd − βd)

×
{

2(xi ∓ yi)d · χ̃−i d̄ · χ̃
+
i +m2

χ̃−i
(xi ± yi)d · d̄

}
(51.83)

using the upper of the sign choices.
The cross section for uū → χ̃+

i χ̃
−
i can be obtained from the above by replacing αd → αu,

βd → βu, qd → qu, ũL → d̃L, Adχ̃−i
→ Au

χ̃−i
, d→ ū, d̄→ u and adopting the lower of the sign choices

everywhere.
The cross section for qq̄ → χ̃−1 χ̃

+
2 , χ̃

+
1 χ̃
−
2 can occur via Z and q̃L exchange. It is usually much

smaller than χ̃−1,2χ̃
+
1,2 production, so the cross section will not be presented here. It can be found

in Appendix A of Ref. [13].
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51.8.4.3 Neutralino pair production
Neutralino pair production via qq̄ fusion takes place via s-channel Z exchange plus t- and u-

channel left- and right- squark exchange (5 diagrams) [17,18]. The Lagrangian couplings (see previ-
ous footnote*) needed include terms given above plus terms of the form L = Wijχ̃0

iγµ(γ5)θi+θj+1χ̃0
jZ

µ.
The couplings Wij depend only on the higgsino components of the neutralinos i and j. The sub-
process cross section is given by:

dσ

dt
(qq̄ → χ̃0

i χ̃
0
j ) = 1

192πs2 [TZ + Tq̃L + Tq̃R + TZq̃L + TZq̃R ] (51.84)

where
TZ = 128e2|Wij |2(α2

q + β2
q )|DZ(s)|2[

q · χ̃0
i q̄ · χ̃0

j + q · χ̃0
j q̄ · χ̃0

i − ηiηjmχ̃0
i
mχ̃0

j
q · q̄

]
, (51.85)

Tq̃L = 4|Aq
χ̃0
i
|2|Aq

χ̃0
j
|2
{

q · χ̃0
i q̄ · χ̃0

j

[(χ̃0
i − q)2 −m2

q̃L
]2

+
q · χ̃0

j q̄ · χ̃0
i

[(χ̃0
j − q)2 −m2

q̃L
]2

− ηiηj
mχ̃0

i
mχ̃0

j
q · q̄

[(χ̃0
i − q)2 −m2

q̃L
][(χ̃0

j − q)2 −m2
q̃L

]

}
(51.86)

Tq̃R = 4|Bq
χ̃0
i
|2|Bq

χ̃0
j
|2
{

q · χ̃0
i q̄ · χ̃0

j

[(χ̃0
i − q)2 −m2

q̃R
]2

+
q · χ̃0

j q̄ · χ̃0
i

[(χ̃0
j − q)2 −m2

q̃R
]2

− ηiηj
mχ̃0

i
mχ̃0

j
q · q̄

[(χ̃0
i − q)2 −m2

q̃R
][(χ̃0

j − q)2 −m2
q̃R

]

}
(51.87)

TZq̃L = 16e(αq − βq)(s−M2
Z)|DZ(s)|2

{ Re(WijA
q∗
χ̃0
i
Aq
χ̃0
j
)

[(χ̃0
i − q)2 −m2

q̃L
]

[
2q · χ̃0

i q̄ · χ̃0
j − ηiηjmχ̃0

i
mχ̃0

j
q · q̄

]

+ ηiηj

Re(WijA
q
χ̃0
i
Aq∗
χ̃0
j
)

[(χ̃0
j − q)2 −m2

q̃L
]

[
2q · χ̃0

j q̄ · χ̃0
i − ηiηjmχ̃0

i
mχ̃0

j
q · q̄

]}
(51.88)

TZq̃R = 16e(αq + βq)(s−M2
Z)|DZ(s)|2

{ Re(WijB
q∗
χ̃0
i
Bq
χ̃0
j
)

[(χ̃0
i − q)2 −m2

q̃R
]

[
2q · χ̃0

i q̄ · χ̃0
j − ηiηjmχ̃0

i
mχ̃0

j
q · q̄

]

−
Re(WijB

q
χ̃0
i
Bq∗
χ̃0
j
)

[(χ̃0
j − q)2 −m2

q̃R
]

[
2q · χ̃0

j q̄ · χ̃0
i − ηiηjmχ̃0

i
mχ̃0

j
q · q̄

]}
. (51.89)

As before, ηi = ±1 corresponding to whether the neutralino mass eigenvalue is positive or negative.
When i = j in the above formula, one must remember to integrate over just 2π steradians of solid
angle to avoid double counting in the total cross section.

31st May, 2024



17 51. Cross-Section Formulae for Specific Processes

51.9 Universal extra dimensions
In the Universal Extra Dimension (UED) model of Ref. [19] (see Ref. [20] for a review of models

with extra spacetime dimensions), the Standard Model is embedded in a five dimensional theory,
where the fifth dimension is compactified on an S1/Z2 orbifold. Each SM chirality state is then the
zero mode of an infinite tower of Kaluza-Klein excitations labeled by n = 0 −∞. A KK parity is
usually assumed to hold, where each state is assigned KK-parity P = (−1)n. If the compactification
scale is around a TeV, then the n = 1 (or even higher) KK modes may be accessible to collider
searches.

Of interest for hadron colliders are the production of massive n ≥ 1 quark or gluon pairs. These
production cross sections have been calculated in Ref. [21,22]. We list here results for the n = 1 case
only with M1 = 1/R (R is the compactification radius) and s, t and u are the usual Mandelstam
variables; more general formulae can be found in Ref. [22]. The superscript ∗ stands for any KK
excited state, while • stands for left chirality states and ◦ stands for right chirality states.

dσ

dt
= 1

16πs2T (51.90)

where

T (qq̄ → g∗g∗) = 2g4
s

27

[
M2

1

(
− 4s3

t′2u′2
+ 57s
t′u′
− 108

s

)

+20s2

t′u′
− 93 + 108t′u′

s2

]
(51.91)

and
T (gg → g∗g∗) =

9g4
s

27

[
3M4

1
s2 + t

′2 + u
′2

t′2u′2
− 3M2

1
s2 + t

′2 + u
′2

st′u′
+ 1

+(s2 + t
′2 + u

′2)3

4s2t′2u′2
− t′u′

s2

]
(51.92)

where t′ = t−M2
1 and u′ = u−M2

1 .
Also,

T (qq̄ → q∗
′

1 q̄
∗′
1 ) = 4g4

s

9

[
2M2

1
s

+ t
′2 + u

′2

s2

]
,

T (qq̄ → q∗1 q̄
∗
1) = g4

2
9

[
2M2

1

(
4
s

+ s

t′2
− 1
t′

)

+23
6 + 2s2

t′2
+ 8s

3t′ + 6t′

s
+ 8t′2

s2

]
,

T (qq → q∗1q
∗
1) = g4

s

27

[
M2

1

(
6 t′

u′2
+ 6 u

′

t′2
− s

t′u′

)

+2
(

3 t
′2

u′2
+ 3u

′2

t′2
+ 4 s

2

t′u′
− 5

)]
,
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T (gg → q∗1 q̄
∗
1) = g4

s

[
M4

1
−4
t′u′

(
s2

6t′u′ −
3
8

)

+M2
1

4
s

(
s2

6t′u′ −
3
8

)
+ s2

6t′u′ −
17
24 + 3t′u′

4s2

]
,

T (gq → g∗q∗1) = −g
4
s

3

[
5s2

12t′2 + s3

t′2u′
+ 11su′

6t′2 + 5u′2

12t′2 + u
′3

st′2

]
,

T (qq̄′ → q∗1 q̄
∗′
1 ) = g4

s

18

[
4M4

1
s

t′2
+ 5 + 4 s

2

t′2
+ 8 s

t′

]
,

T (qq′ → q∗1q
∗′
1 ) = 2g4

s

9

[
−M2

1
s

t′2
+ 1

4 + s2

t′2

]
,

T (qq → q•1q
◦
1) =

g4
s

9

[
M2

1

(
2s3

t′2u′2
− 4s
t′u′

)
+ 2 s4

t′2u′2
− 8 s

2

t′u′
+ 5

]
,

T (qq̄′ → q•1 q̄
′◦
1 ) = g4

s

9

[
2M2

1

( 1
t′

+ u′

t′2

)
+ 5

2 + 4u′

t′
+ 2u′2

t′2

]
,

and
T (qq′ → q•1q

′◦
1 ) = g4

s

9

[
−2M2

1

( 1
t′

+ u′

t′2

)
+ 1

2 + 2u′2

t′2

]
.

51.10 Large extra dimensions
In the ADD theory [23] with large extra dimensions (LED), the SM particles are confined

to a 3-brane, while gravity propagates in the bulk. It is assumed that the n extra dimensions are
compactified on an n-dimensional torus of volume (2πr)n, so that the fundamental 4+n dimensional
Planck scale M∗ is related to the usual 4-dimensional Planck scale MPl by M2

Pl = Mn+2
∗ (2πr)n. If

M∗ ∼ 1 TeV, then the MW −MPl hierarchy problem is just due to gravity propagating in the large
extra dimensions.

In these theories, the KK-excited graviton states Gnµν for n = 1−∞ can be produced at collider
experiments. The graviton couplings to matter are suppressed by 1/MPl, so that graviton emission
cross sections dσ/dt ∼ 1/M2

Pl. However, the mass splittings between the excited graviton states
can be tiny, so the graviton eigenstates are usually approximated by a continuum distribution. A
summation (integration) over all allowed graviton emissions ends up cancelling the 1/M2

Pl factor,
so that observable cross section rates can be attained. Some fundamental production formulae for
a KK graviton (denoted G) of mass m at hadron colliders include the subprocesses

dσm
dt

(ff̄ → γG) =
αQ2

f

16Nf

1
sM2

Pl

F1( t
s
,
m2

s
), (51.93)

where Qf is the charge of fermion f and Nf is the number of QCD colors of f . Also,

dσm
dt

(qq̄ → gG) = αs
36

1
sM2

Pl

F1( t
s
,
m2

s
), (51.94)

dσm
dt

(qg → qG) = αs
96

1
sM2

Pl

F2( t
s
,
m2

s
), (51.95)
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dσm
dt

(gg → gG) = 3αs
16

1
sM2

Pl

F3( t
s
,
m2

s
), (51.96)

where

F1(x, y) = 1
x(y − 1− x)

[
−4x(1 + x)(1 + 2x+ 2x2)+

y(1 + 6x+ 18x2 + 16x3)− 6y2x(1 + 2x) + y3(1 + 4x)
]

(51.97)

F2(x, y) = −(y − 1− x)F1

(
x

y − 1− x,
y

y − 1− x

)
(51.98)

and

F3(x, y) = 1
x(y − 1− x)

[
1 + 2x+ 3x2 + 2x3 + x4

−2y(1 + x3) + 3y2(1 + x2)− 2y3(1 + x) + y4
]
. (51.99)

These formulae must then be multiplied by the graviton density of states formula
dN = Sn−1

M2
Pl

Mn+2
∗

mn−1dm to gain the cross section

d2σ

dtdm
= Sn−1

M2
Pl

Mn+2
∗

mn−1dσm
dt

(51.100)

where Sn = (2π)n/2

Γ (n/2) is the surface area of an n-dimensional sphere of unit radius.
Virtual graviton processes can also be searched for at colliders. For instance, in Ref. [24] the

cross section for Drell-Yan production of lepton pairs via gluon fusion was calculated, where it is
found that, in the center-of-mass system

dσ

dz
(gg → `+`−) = λ2s3

64πM8
∗

(1− z2)(1 + z2) (51.101)

where z = cos θ and λ is a model-dependent coupling constant ∼ 1. Formulae for Drell-Yan
production via qq̄ fusion can also be found in Refs. [24, 25].

51.11 Warped extra dimensions
In the Randall-Sundrum model [26] of warped extra dimensions, the arena for physics is a 5-d

anti-deSitter (AdS5) spacetime, for which a non-factorizable metric exists with a metric warp factor
e−2σ(φ). It is assumed that two opposite tension 3-branes exist within AdS5 at the two ends of
an S1/Z2 orbifold parameterized by co-ordinate φ which runs from 0 − π. The 4-D solution of
the Einstein equations yields σ(φ) = krc|φ|, where rc is the compactification radius of the extra
dimension and k ∼ MPl. The 4-D effective action allows one to identify M2

Pl = M3

k (1 − e−2krcπ),
where M is the 5-D Planck scale. Physical particles on the TeV scale (SM) brane have mass
m = e−krcπm0, where m0 is a fundamental mass of order the Planck scale. Thus, the weak scale-
Planck scale hierarchy occurs due to the existence of the exponential warp factor if krc ∼ 12.

In the simplest versions of the RS model, the TeV-scale brane contains only SM particles plus
a tower of KK gravitons. The RS gravitons have mass mn = kxne

−krcπ, where the xi are roots
of Bessel functions J1(xn) = 0, with x1 ' 3.83, x2 ' 7.02 etc. While the RS zero-mode graviton
couplings suppressed by 1/MPl and are thus inconsequential for collider searches, the n = 1 and
higher modes have couplings suppressed instead by Λπ = e−krcπMPl ∼ TeV . The n = 1 RS
graviton should have width Γ1 = ρm1x

2
1(k/MPl)2, where ρ is a constant depending on how many
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decay modes are open. The formulae for dilepton production via virtual RS graviton exchange can
be gained from the above formulae for the ADD scenario via the replacement [27]

λ

M4
∗
→ i2

8Λ2
π

∞∑
n=1

1
s−m2

n + imnΓn
. (51.102)
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